Rick's Free Auto Repair Advice

GM Electrical Power Management

GM Electrical Power Management— How it works

GM electrical power management system monitors and controls the charging system and sends diagnostic messages to driver message center when it encounters problems with the battery and generator. The system is designed to maximize the effectiveness of the generator, to manage electrical loads, improve the battery’s state-of-charge and extend battery life, and minimize the system’s impact on fuel economy.

GM electrical power management system performs 3 functions:

1. It monitors the battery voltage and estimates the battery condition.
2. It takes corrective actions by boosting idle speeds, and adjusting the regulated voltage (if equipped).
3. It performs diagnostics and driver notification.

The battery condition is estimated during ignition-off and during ignition-on. During ignition-off, the state-of-charge of the battery is determined by measuring the open-circuit voltage. The state-of-charge is a function of the acid concentration and the internal resistance of the battery and is estimated by reading the battery open-circuit voltage when the battery has been at rest for several hours.

Throughout ignition-on, the algorithm continuously estimates state-of-charge based on adjusted net amp hours, battery capacity, initial state-of-charge, and temperature.

While running, the battery degree of discharge is primarily determined by a battery current sensor (if equipped), which is integrated to obtain net amp hours.

Battery current sensor

If equipped with a battery current sensor, the

battery current sensor

Battery current sensor connected to negative battery terminal

electrical power management function is also designed to perform regulated voltage control to improve battery state-of-charge, battery life, and fuel economy.

This is accomplished by using knowledge of the battery state-of-charge and temperature to set the charging voltage to an optimum battery voltage level for recharging without detriment to battery life.

The battery current sensor is a serviceable component that is connected to the negative battery cable at the battery. The battery current sensor is a 3-wire hall effect current sensor. The battery current sensor monitors the battery current. It directly inputs to the BCM. It creates a 5-volt pulse width modulation (PWM) signal of 128 Hz with a duty cycle of 0–100 percent. The normal duty cycle is between 5–95 percent. Between 0–5 percent and 95–100 percent are for diagnostic purposes.

GM Electrical Power Management Generator

The voltage regulator integral to the generator controls the output of the generator. It is not serviceable. The voltage regulator controls the amount of current provided to the rotor. If the generator has field control circuit failure, the generator defaults to an output voltage of 13.8 V.

The Role of the Body Control Module (BCM)

The BCM communicates with the engine control module (ECM) and the instrument panel cluster for electrical power management operation. The BCM determines the output of the generator and sends the information to the ECM for control of the generator turn-on signal circuit. It monitors the generator field duty cycle signal circuit information sent from the ECM for control of the generator. It monitors a battery current sensor (if equipped), the battery positive voltage circuit, and estimated battery temperature to determine the battery’s state of charge. The ECM also boosts idle speed.

The Role of the Engine Control Module (ECM)

When the engine is running, the generator turn-on signal is sent to the generator from the ECM, turning on the regulator. The rotor current is proportional to the electrical pulse width supplied by the regulator. When the engine is started, the regulator senses generator rotation by detecting AC voltage at the stator through an internal wire. Once the engine is running, the regulator varies the field current by controlling the pulse width. This regulates the generator output voltage for proper battery charging and electrical system operation. The generator field duty terminal is connected internally to the voltage regulator and externally to the ECM. When the voltage regulator detects a charging system problem, it grounds this circuit to signal the ECM that a problem exists. The ECM monitors the generator field duty cycle signal circuit and receives control decisions based on information from the BCM.

GM electrical power management charging system operation

The purpose of the charging system is to maintain the battery charge and vehicle loads. There are 6 modes of operation and they include:
• Battery Sulfation Mode
• Charge Mode
• Fuel Economy Mode
• Headlamp Mode
• Start Up Mode
• Voltage Reduction Mode

The engine control module (ECM) controls the generator through the generator turn ON signal circuit. The ECM monitors the generator performance though the generator field duty cycle signal circuit. The signal is a pulse width modulation (PWM) signal of 128 Hz with a duty cycle of 0–100 percent. The normal duty cycle is between 5–95 percent. Between 0–5 percent and 95–100 percent are for diagnostic purposes.

Commanded Duty Cycle Generator Output Voltage

10% 11 V
20% 11.56 V
30% 12.12 V
40% 12.68 V
50% 13.25 V
60% 13.81 V
70% 14.37 V
80% 14.94 V
90% 15.5 V

Battery Sulfation Mode

The BCM will enter this mode when the interpreted generator output voltage is less than 13.2 V for 45 minutes. When this condition exists the BCM will enter Charge Mode for 2–3 minutes. The BCM will then determine which mode to enter depending on voltage requirements.

Charge Mode

The BCM will enter Charge Mode whenever one of the following conditions are met.
• The wipers are ON for than 3 seconds.
• GMLAN (Climate Control Voltage Boost Mode Request) is true, as sensed by the HVAC control head. High-speed cooling fan, rear defogger and HVAC high-speed blower operation can cause the BCM to enter the Charge Mode.
• The estimated battery temperature is less than 0°C (32°F).
• Battery State of Charge is less than 80 percent.
• Vehicle speed is greater than 145 km/h (90 mph)
• Battery current sensor fault exists (if equipped).
• System voltage was determined to be below 12.56 V

When any one of these conditions is met, the system will set targeted generator output voltage to a charging voltage between 13.9–15.5 V, depending on the battery state of charge and estimated battery temperature.

Fuel Economy Mode

The BCM will enter Fuel Economy Mode when the estimated battery temperature is at least 0°C (32°F) but less than or equal to 80°C (176°F), the calculated battery current is less than 15 amperes and greater than −8 amperes, and the battery state-of-charge is greater than or equal to 80 percent. Its targeted generator output voltage is the open-circuit voltage of the battery and can be between 12.5–13.1 V. The BCM will exit this mode and enter Charge Mode when any of the conditions described above are present.

Headlamp Mode

The BCM will enter Headlamp Mode whenever the headlamps are ON (high or low beams). Voltage will be regulated between 13.9–14.5 V.

Start Up Mode

When the engine is started the BCM sets a targeted generator output voltage of 14.5 V for 30 seconds.

Voltage Reduction Mode

The BCM will enter Voltage Reduction Mode when the calculated ambient air temperature is above 0°C (32°F). The calculated battery current is less than 1 ampere and greater than −7 amperes, and the generator field duty cycle is less than 99 percent. Its targeted generator output voltage is 12.9 V. The BCM will exit this mode once the criteria are met for Charge Mode.

Instrument Panel Cluster Operation Charge Indicator Operation

The instrument panel cluster illuminates the charge indicator and displays a warning message in the driver information center if equipped when the one or more of the following occurs:
• The engine control module (ECM) detects that the generator output is less than 11 V or greater than 16 V. The instrument panel cluster receives a GMLAN message from the ECM requesting illumination.
• The instrument panel cluster determines that the system voltage is less than 11 V or greater than 16 V for more than 30 seconds. The instrument panel cluster receives a GMLAN message from the body control module (BCM) indicating there is a system voltage range concern.
• The instrument panel cluster performs the displays test at the start of each ignition cycle. The indicator illuminates for approximately 3 seconds.
Display Message: BATTERY NOT CHARGING SERVICE CHARGING SYSTEM or SERVICE BATTERY CHARGING SYSTEM
The BCM and the ECM will send a serial data message to the driver information center for the BATTERY NOT CHARGING SERVICE CHARGING SYSTEM or SERVICE BATTERY CHARGING SYSTEM message to be displayed. It is commanded ON when a charging system DTC is a current DTC. The message is turned OFF when the conditions for clearing the DTC have been met. During cold weather warm-up and extreme electrical demand, the generator capacity can be briefly exceeded causing this message to be displayed for up to two minutes.

Both types maintain the battery at 80% or higher state of charge. If the systems can’t maintain that level of charge, they will automatically shut down electrical accessories in order of priority to protect the battery. This is called load shedding. The system can also boost engine RPM to increase charging rates.

Posted on by Rick Muscoplat



Custom Wordpress Website created by Wizzy Wig Web Design, Minneapolis MN